How To Find The Turning Point Of A Cubic Function
Discover the integral roots of a given Cubic equation
Given 5 integers say A, B, C, D, and Eastward which represents the cubic equation
, the job is to observe the integral solution for this equation. If there doesn't exist any integral solution then print "NA".
Examples:
Input: A = 1, B = 0, C = 0, D = 0, E = 27
Output: 3
Input: A = 1, B = 0, C = 0, D = 0, E = 16
Output: NA
Arroyo: The idea is to use binary search. Beneath are the steps:
- Initialise the first and end variable as 0 & 105 respectively.
- Find the middle(say mid) value of start and end check if it satisfy the given equation or non.
- If current mid satisfy the given equation the print the mid value.
- Else if the value of f(10) is less than E then update commencement as mid + one.
- Else Update end as mid – i.
- If we can't find any integral solution for the above equation and so print "-1".
Beneath is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
long long int check( int A, int B, int C,
int D, long long int 10)
{
long long int ans;
ans = (A * x * x * x
+ B * ten * x
+ C * x
+ D);
return ans;
}
void findSolution( int A, int B, int C,
int D, int E)
{
int start = 0, finish = 100000;
long long int mid, ans;
while (first <= end) {
mid = kickoff + (end - start) / ii;
ans = check(A, B, C, D, mid);
if (ans == E) {
cout << mid << endl;
return ;
}
if (ans < E)
start = mid + 1;
else
end = mid - 1;
}
cout << "NA" ;
}
int main()
{
int A = 1, B = 0, C = 0;
int D = 0, E = 27;
findSolution(A, B, C, D, East);
}
Java
import java.util.*;
class GFG{
static long check( int A, int B, int C,
int D, long x)
{
long ans;
ans = (A * x * ten * x +
B * x * x + C * ten + D);
return ans;
}
static void findSolution( int A, int B, int C,
int D, int East)
{
long commencement = 0 , end = 100000 ;
long mid, ans;
while (commencement <= end)
{
mid = start + (terminate - start) / 2 ;
ans = cheque(A, B, C, D, mid);
if (ans == Eastward)
{
System.out.println(mid);
return ;
}
if (ans < Due east)
offset = mid + 1 ;
else
end = mid - 1 ;
}
System.out.println( "NA" );
}
public static void main(Cord args[])
{
int A = 1 , B = 0 , C = 0 ;
int D = 0 , E = 27 ;
findSolution(A, B, C, D, East);
}
}
Python3
def bank check(A, B, C, D, x) :
ans = 0 ;
ans = (A * ten * x * x +
B * x * x + C * x + D);
render ans;
def findSolution(A, B, C, D, E) :
start = 0 ; stop = 100000 ;
mid = 0 ;
ans = 0 ;
while (beginning < = end) :
mid = start + (end - start) / / 2 ;
ans = check(A, B, C, D, mid);
if (ans = = East) :
print (mid);
return ;
if (ans < E) :
starting time = mid + 1 ;
else :
end = mid - 1 ;
print ( "NA" );
if __name__ = = "__main__" :
A = 1 ; B = 0 ; C = 0 ;
D = 0 ; E = 27 ;
findSolution(A, B, C, D, E);
C#
using Arrangement;
class GFG{
static long check( int A, int B, int C,
int D, long 10)
{
long ans;
ans = (A * x * x * x +
B * x * x + C * x + D);
return ans;
}
static void findSolution( int A, int B, int C,
int D, int East)
{
long offset = 0, end = 100000;
long mid, ans;
while (start <= end)
{
mid = start + (terminate - start) / 2;
ans = check(A, B, C, D, mid);
if (ans == E)
{
Console.WriteLine(mid);
return ;
}
if (ans < E)
outset = mid + ane;
else
stop = mid - 1;
}
Panel.Write( "NA" );
}
public static void Main()
{
int A = 1, B = 0, C = 0;
int D = 0, E = 27;
findSolution(A, B, C, D, E);
}
}
Javascript
<script>
function check(A, B, C, D, x)
{
var ans;
ans = (A * x * 10 * ten +
B * x * x + C * x + D);
return ans;
}
function findSolution(A, B, C, D, E)
{
var offset = 0, cease = 100000;
var mid, ans;
while (start <= terminate)
{
mid = parseInt(start + (end - start) / ii);
ans = check(A, B, C, D, mid);
if (ans == E)
{
document.write(mid);
return ;
}
if (ans < Due east)
kickoff = mid + one;
else
cease = mid - 1;
}
certificate.write( "NA" );
}
var A = 1, B = 0, C = 0;
var D = 0, E = 27;
findSolution(A, B, C, D, E);
</script>
Time Complexity: O(log Northward)
Source: https://www.geeksforgeeks.org/find-the-integral-roots-of-a-given-cubic-equation/
Posted by: ottmanpreal1956.blogspot.com

0 Response to "How To Find The Turning Point Of A Cubic Function"
Post a Comment